Vetmedin ${ }^{\circledR}$

(pimobendan) Chewable Tablets

Cardiac drug for oral use in dogs only
Caution: Federal law restricts this drug to use by or on the order of a licensed veterinarian.
Description: Vetmedin (pimobendan) is supplied as oblong half-scored chewable tablets containing $1.25,2.5,5$ or 10 mg pimobendan per tablet. Pimobendan, a benzimidazole-pyridazinone derivative, is a non-sympathomimetic, non-glycoside inotropic drug with vasodilatative properties. Pimobendan exerts a stimulatory myocardial effect by a dual mechanism of action consisting of an (Typease in calcium senstivity of cardiac myotiaments and innition of phos terase III activity. The chemical name of pimobendan is 4.5 -dihydro-6-[2-(4-methoxyphenyl)1 H -benzimidazole-5-yl]-5-methyl-3(2H)-pyridazinone. The structural formula of pimobendan

Indications: Vetmedin (pimobendan) is indicated for the management of the signs of mild
 atrioventricular valvular insufficiency (AV) or dilated cardiomyopathy (DCM). Vetmedin is indicated for use with concurent therapy for congestive heart failure (e.g., furosemide, etc.) as ${ }^{2}$ A dog with modified New York Heart Association (NYHA) Class II heart failure has fatigue, shortness of breath, coughing, etc. apparent when ordinary exercise is exceeded.
${ }^{\circ}$ A dog with modified NYHA Class III heart failure is comfortable at rest, but exercise capacity is minimal.

A dog with modified NYHA Class IV heart failure has no capacity for exercise and disabling clinical signs are present even at rest.
Dosage and Administration: Vetmedin should be administered orally at a total daily dose of $0.23 \mathrm{mg} / \mathrm{lb}(0.5 \mathrm{mg} / \mathrm{kg})$ body weight, using a suitable combination of whole or half tablets. The total daily dose should be divided into 2 portions that are not necessarily equal, and the portablets are scored and the calcuproximately 12 hours apart (i.e., morning and evening). Th increment.
Contraindications: Vetmedin should not be given in cases of hypertrophic cardiomyopathy aortic stenosis, or any other clinical condition where an augmentation of cardiac output is inappropriate for functional or anatomical reasons.

Warnings: Only for use in dogs with clinical evidence of heart failure. At 3 and 5 times the rec ommended dosage, administered over a 6-month period of time, pimobendan caused an exaggerated hemodynamic response in the normal dog heart, which was associated with cardiac pathology (See Animal Safety).
Human Warnings: Not for use in humans. Keep this and all medications out of reach of children. Consult a physician in case of accidental ingestion by humans.
Precautions: The safety of Vetmedin has not been established in dogs with asymptomatic heart disease or in heart failure caused by etiologies other than AVVI or DCM. The safe use of Vetmedefects, dogs with diabetes mellitus or other serious metabolic diseases, dogs used for breed ing or pregnant or lactating bitches.

Adverse Reactions: Clinical findings/adverse reactions were recorded in a 56-day field study of dogs with congestive heart failure (CHF) due to AVI (256 dogs) or DCM (99 dogs). Dogs were treated with either Vetmedin (175 dogs) or the active control enalapril maleate (180 dogs). Dogs in both treatment groups received additional background cardiac therapy (See Effectiv ness for details and the difference in digoxin administration between treatment groups).
The Vetmedin group had the following prevalence (percent of dogs with at least one occurrence) of common adverse reactions/new clinical findings (not present in a dog prior to beginning study treatments): poor appetite (38%), lethargy (33%), diarrhea (30%), dyspnea (29%), azotemia (14%), weakness and ataxia (13%), pleural effusion (10%), syncope (9%), cough (7%), sudden death (6%), asctes (6%), and heart, murmur (3%). Prevalence was similaron the active pared to the Vetmedin group (1%). Adverse reactions/new clinical findings were seen in both treatment groups and were potentially related to CHF , the therapy of CHF , or both. The following adverse reactions/new clinica
 sudden death, chordae weal irregular pulses, increased pulmonary edema, dyspnea, increased respiratory rate, coughing gagging pleural effusion, ascites, hepatic congestion, decreased appetite, vomiting, diarrhea, melena, weight loss, lethargy, depression, weakness, collapse, shaking trembling, ataxia, seizures, restlessness, agitation, pruritus, increased water consumption, increased urination, urinary accidents, azotemia, dehydration, abnormal serum electrolyte, protein, and glucose values, mild increases in serum hepatic enzyme levels, and mildly decreased platelet counts.
See Table 1 for mortality due to CHF (including euthanasia, natural death, and sudden death) and for the development of new arrhythmias (not present in a dog prior to beginning study study.

Table 1: CHF Death and New Arrhythmias in the 56-Day Field Study

	Vetmedin ${ }^{\circ}$ Group	Active Control Group
Dogs that died due to CHF	$\begin{gathered} 14.3 \% \\ \mathrm{n}=175 \\ \hline \end{gathered}$	$\begin{gathered} 14.4 \% \\ \mathrm{n}=180 \\ \hline \end{gathered}$
	$\begin{aligned} & 9 \text { of } 126 \text { dogs } \\ & \text { with AVVI } \end{aligned}$	$\begin{gathered} 16 \text { of } 130 \text { dogs } \\ \text { with AVVI } \end{gathered}$
	$\begin{aligned} & 16 \text { of } 49 \text { dogs } \\ & \text { with DCM } \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \text { of } 50 \text { dogs } \\ & \text { with DCM } \\ & \hline \end{aligned}$
Dogs that developed new arrhythmias ${ }^{\text {a }}$	$\begin{array}{r} 39.4 \% \\ \mathrm{n}=175 \\ \hline \end{array}$	$\begin{aligned} & 45.0 \% \\ & n=180 \end{aligned}$
	$\begin{gathered} 45 \text { of } 126 \text { dogs } \\ \text { with AVVI } \end{gathered}$	$\begin{gathered} 59 \text { of } 130 \text { dogs } \\ \text { with AVI } \\ \hline \end{gathered}$
	$\begin{aligned} & 24 \text { of } 49 \text { dogs } \\ & \text { with DCM } \end{aligned}$	$\begin{aligned} & 22 \text { of } 50 \text { dogs } \\ & \text { with DCM } \end{aligned}$

New arrhythmias included supraventricular premature beats and tachycardia, atrial fibrillation, atrioventricular block, sinus bradycardia, ventricular premature beats and tachycardia, and bundle branch block
Following the 56-day masked field study, 137 dogs in the Vetmedin group were allowed to continue on Vetmedin in an open-label extended-use study without restrictions on concurrent therapy. The adverse reactions/new clinical findings in the extended-use study were consistent with those reported in the 56-day study, with the following exception: One dog in the extended-use study developed acute cholestatic liver failure after 140 days on Vetmedin and furosemide.
In foreign post-approval drug experience reporting, the following additional suspected adverse reactions were reported in dogs treated with a capsule formulation of pimobendan: hemorrhage, petechia, anemia, hyperactivity, excited behavior, erythema, rash, drooling, constipation, and diabetes mellitus.
To report suspected adverse reactions, to obtain a Material Safety Data Sheet, or for technical assistance call 1-866-638-2226.
Clinical Pharmacology: Pimobendan is oxidatively demethylated to a pharmacologically active metabolite which is then conjugated with sulfate or glucuronic acid and excreted mainly via feces. The mean extent of
protein binding of pimobendan and the active metabolite in dog plasma is $>90 \%$. Following a single oral administration of $0.25 \mathrm{mg} / \mathrm{kg}$ Vetmedin tablets the maximal mean (± 1 SD) plasma concentrations (Cmax) of pimobendan and the active metabolite were $3.09(0.76) \mathrm{ng} / \mathrm{ml}$ and $3.66(1.21) \mathrm{ng} / \mathrm{ml}$, respectively. Individual dog Cmax values for pimobendan and the active metabolite were observed 1 to 4 hours post-dose (mean: 2 and 3 hours, respectively). The total body clearance of pimobendan was approximately $90 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$, and the terminal elimination half-lives of pimobendan and the active metabolite were approximately 0.5 hours and 2 hours, respectively. Plasma levels of pimobendan and active metabolite were below quantifiable levels by 4 and 8 hours after oral administration, respectively. The steady-state volume of distribution of pimobendan is $2.6 \mathrm{~L} / \mathrm{kg}$ indicating that the drug is readily distributed into tissues. Food decreased the bioavailability of an aqueous solution of pimobendan, but the effect of food on the absorption of pimobendan from Vetmedin
In normal dogs instrumented with left ventricular (LV) pressure transducers, pimobendan increased LV $\mathrm{dP} / \mathrm{dtmax}$ (a measure of contractility of the heart) in a dose dependent manner between 0.1 and $0.5 \mathrm{mg} / \mathrm{kg}$ orally. The effect was still present 8 hours after dosing. There was a delay between peak blood levels of pimobendan and active metaboote and the maxim administration of pimobendan did not result in evidence of tachyphylaxis (decreased positive inotropic effect) or drug accumulation (increased positive inotropic effect). Laboratory studies indicate that the posi tive inotropic effect of pimobendan may be attenuated by the concurrent use of a β-adrenergic blocker or calcium channel blocker.
Effectiveness: In a double-masked, multi-site, 56 -day field study, 355 dogs with modified NYHA Class II, III, or IV CHF due to AVVI or DCM were randomly assigned to either the active control (enalapril maleate) or the Vetmedin (pimobendan) treatment group. Of the 355 dogs, 52% were male and 48% were female; 72% were diagnosed with AVVI and 28\% were diagnosed with DCM; 34% had Class II, 47% had Class III, and 19% had Class IV CHF. Dogs ranged in age and weight from 1 to 17 years and 3.3 to 191 lb , respectively. The most common breeds were mixed breed, Doberman Pinscher, Cocker Spaniel, Miniature/Toy Poodle, Maltese, Chihuahua, Miniature Schnauzer, Dachshund, and Cavalier King Charles Spaniel. The 180 dogs (130 AVVI, 50 DCM in the active control group received enalapril maleate ($0.5 \mathrm{mg} / \mathrm{kg}$ once or twice daily), and all but 2 received furosemide. Per protocol, all dogs with DCM in the active control group received digoxin. The 175 dogs (126
AVVI, 49 DCM) in the Vetmedin group received pimobendan ($0.5 \mathrm{mg} / \mathrm{kg} /$ day divided into 2 portions that were AVVI, 49 DCM) in the Vetmedin group received pimobendan ($0.5 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ divided into 2 portions that
not necessarily equal, and the portions were administered approximately 12 hours apart), and all but 4 received furosemide Digoxin was optional for treating supraventricular tachyarrhythmia in either treatmen group, as was the addition of a β-adrenergic blocker if digoxin was ineffective in controlling heart rate. Afte initial treatment at the clinic on Day 1, dog owners were to administer the assigned product and concurrent medications for up to 56 ± 4 days.
The determination of effectiveness (treatment success) for each case was based on improvement in at least 2 of the 3 following primary variables: modified NYHA classification, pulmonary edema score by a masked
 level furosemide dosage change, cardiac size, body weight survival, and owner observations were secondary evaluations contributing information supportive to product effectiveness and safety.
Based on protocol compliance and individual case integrity, 265 cases (134 Vetmedin, 131 active control) were evaluated for treatment success on Day 29 . See Table 2 for effectiveness results.
Table 2: Effectiveness Results for the 56-Day Field Study

	Vetmedin ${ }^{\text {® }}$ Group	Active Control Group
Treatment Success on Day 29	$\begin{gathered} 80.7 \% \\ \mathrm{n}=134 \end{gathered}$	76.3%
	$\begin{gathered} 88 \text { of } 101 \text { dogs } \\ \text { with AVVI } \end{gathered}$	$\begin{gathered} 77 \text { of } 100 \text { dogs } \\ \text { with AVVI } \end{gathered}$
	20 of 33 dogs with DCM	$\begin{aligned} & 23 \text { of 31 dogs } \\ & \text { with DCM } \end{aligned}$
Treatment Success on Day 56	$\begin{gathered} 71.1 \% \\ n=113 \\ \hline \end{gathered}$	$\begin{gathered} 67.2 \% \\ n=110 \end{gathered}$
	66 of 85 dogs with AVVI	$\begin{gathered} 56 \text { of } 85 \text { dogs } \\ \text { with AVVI } \end{gathered}$
	13 of 28 dogs with DCM	$\begin{aligned} & 17 \text { of } 25 \text { dogs } \\ & \text { with DCM } \end{aligned}$
No increase in furosemide dose between Day 1 and Day 29	$\begin{aligned} & 78.3 \% \\ & n=130 \end{aligned}$	$\begin{aligned} & 68.6 \% \\ & n=126 \end{aligned}$

At the end of the 56-day study, dogs in the Vetmedin group were enrolled in an unmasked field study to monitor safety under extended use, without restrictions on concurrent medications.

Vetmedin was used safely in dogs concurrently receiving furosemide, digoxin, enalapril, atenolol, spironolactone, nitroglycerin, hydralazine, diltiazem, antiparasitic products (including heartworm prevention), antibiotics (metronidazole, cephalexin, amoxicilin-clavulanate, flussodium, diphenhydramine, hydrocodone, metoclopramide, and butorphanol, and in dogs on sodium-restricted diets.
Palatability: In a laboratory study, the palatability of Vetmedin was evaluated in 20 adult female Beagle dogs offered doses twice daily for 14 days. Ninety percent (18 of 20 dogs) voluntarily consumed more than 70% of the 28 tablets offered. Including two dogs that consumed only and 7% of the tablets offered, the average voluntary consumption was 84.2%.

Animal Safety: In a laboratory study, Vetmedin chewable tablets were administered to 6 healthy Beagles per treatment group at 0 (control), 1,3 , and 5 times the recommended dosage for 6 months. See Table 3 for cardiac pathology results. The cardiac pathology/histopathology noted in the $3 X$ and 5 X dose groups is typical of positive inotropic and vasodilator drug toxicity in normal dog hearts, and is associated with exaggerated hemodynamic responses to the
Table 3: Incidence of Cardiac Pathology/Histopathology in the Six-month Safety Study

Severe left ventricular hypertrophy with multifocal subendocardial ischemic lesions	One 3 X and two 5 X dogs
Moderate to marked myxomatous thickening of the mitral valves	Three 5X dogs
Myxomatous thickening of the chordae tendineae	One 3X and two 5X dogs
Endocardial thickening of the left ventricular outflow tract	One 1X, two 3X, and two 5X dogs
Left atrial endocardial thickening (jet lesions) in 2 of the dogs that developed murmurs of mitral valve insufficiency	One 3X and one 5X dog
Granulomatous inflammatory lesion in the right atrial myocardium	One 3X dog

${ }^{\text {a }}$ Most of the gross and histopathologic findings occurred in these three dogs

Murmurs of mitral valve insufficiency were detected in one $3 X$ (Day 65) and two 5 X dogs (Days 135 and 163). These murmurs (grades II-III of VI) were not associated with clinical signs.

Indirect blood pressure was unaffected by Vetmedin at the label dose (1X). Mean diastolic blood pressure was decreased in the 3 X group (74 mmHg) compared to the control group (82 mmHg). Mean systolic blood pressure was decreased in the 5 X group (117 mmHg) compared to the control group (124 mmHg). None of the dogs had clinical signs of hypotension.
On 24-hour Holter monitoring, mean heart rate was increased in the 5X group (101 beats $/ \mathrm{min}$) compared to the control group (94 beats $/ \mathrm{min}$). Not counting escape beats, the $3 X$ and $5 X$ groups had slightly higher num bers of isolated ventricular ectopic complexes (VES). The maximum number of non-escape VEs recorded either at baseline or in a control group dog was $4 \mathrm{VEs} / 24$ hours. At either Week 4 or Week 20, three 3X group dogs had maximums of 33,13 , and $10 \mathrm{VEs} / 24$ hours, and two 5 X group dogs had maximums of 22 and 9 VEs/24 hours. One 1X group dog with no VEs at baseline had 6 VEs/24 hours at Week 4 and again at Week 20 Second-degree atrioventricular heart block was recorded in one $3 X$ group dog at Weeks 4 and 20, and in one dog from each or $1 \times$ and 5 groups electrocardiogram changes.
Treatment was associated with small differences in mean platelet counts (decreased in the 3 X and 1 X groups), potassium (increased in the 5 X group), glucose (decreased in the 1 X and 3 X groups), and maximum ithig (less Loose stools and vomit

Storage Information: Store at 20° to $25^{\circ} \mathrm{C}\left(68^{\circ}\right.$ to $\left.77^{\circ} \mathrm{F}\right)$, excursions permitted between 15° and $30^{\circ} \mathrm{C}$ (between 59° and $86^{\circ} \mathrm{F}$)
How Supplied:
Vetmedin (pimobendan) Chewable Tablets:
NDC 0010-4480-01-1.25 mg-50 tablets
NDC 0010-4480-01-1.25 mg - 50 table
NDC 0010-4482-01-5 mg - tablets
NDC 0010-4481-01-2.5 mg-50 tablet
NDC 0010-4479-01-10 mg-50 tablets
NDC 0010-4479-0
Manufactured by:
Boehringer Ingelheim Promeco S.A. de C.V.
Mexico City, Mexico
Manufactured for:
Boehringer Ingelheim Vetmedica, Inc
St. Joseph, MO 64506 U.S.A.
Vetmedin ${ }^{\circledR}$ is a registered trademark of
Boehringer Ingelheim Vetmedica GmbH
licensed to Boehringer Ingelheim Vetmedica, Inc.
Copyright © 2013 Boehringer Ingelheim Vetmedica, Inc. or an affiliated company. All Rights Reserved
448005-00
Revised 06/2013

